T

/ITerms of use

T

//ITHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
//IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
//IFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
//AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
//ILIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
//OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
//ITHE SOFTWARE.

/!

T

//Safety note

e

//Always remove the propellers and stay away from the motors unless you

/lare 100% certain of what you are doing.
e

T
//The program will start in calibration mode.

//Send the following characters / numbers via the serial monitor to change the mode
/!

//r = print receiver signals.

//a = print quadcopter angles.

//1 = check rotation / vibrations for motor 1 (right front CCW)).
//2 = check rotation / vibrations for motor 2 (right rear CW).
//3 = check rotation / vibrations for motor 3 (left rear CCW).
//4 = check rotation / vibrations for motor 4 (left front CW).
//5 = check vibrations for all motors together.

#include <Wire.h> //Include the Wire.h library so we can communicate with the gyro.
#include <EEPROM.h> //Include the EEPROM.h library so we can store information onto
the EEPROM

//Declaring global variables

byte last channel 1, last channel 2, last channel 3, last channel 4;

byte eeprom_data[36], start, data;

boolean new function request,first angle;

volatile int receiver input channel 1, receiver input channel 2, receiver input channel 3,
receiver input channel 4;

intesc 1,esc 2,esc 3,esc 4;

int counter channel 1, counter channel 2, counter channel 3, counter channel 4;

int receiver input[5];

int loop counter, gyro address, vibration counter;

int temperature;

long acc X, acc_y, acc_z, acc_total vector[20], acc_av_vector, vibration_ total result;
unsigned long timer channel 1, timer channel 2, timer channel 3, timer channel 4, esc timer,
esc_loop timer;

unsigned long zero timer, timer 1, timer 2, timer 3, timer 4, current time;

int acc_axis[4], gyro_axis[4];

double gyro_pitch, gyro roll, gyro yaw;

float angle roll acc, angle pitch acc, angle pitch, angle roll;
int cal_int;

double gyro_axis cal[4];

//Setup routine

void setup(){

Serial.begin(57600); //Start the serial port.

Wire.begin(); //Start the wire library as master

TWBR = 12; //Set the 12C clock speed to 400kHz.

//Arduino Uno pins default to inputs, so they don't need to be explicitly declared as inputs.

DDRD |=B11110000; //Configure digital poort 4, 5, 6 and 7 as
output.

DDRB |= B00010000; //Configure digital poort 12 as output.

PCICR |= (1 << PCIEO0); // set PCIEQ to enable PCMSKO scan.

PCMSKO |= (1 << PCINTO); // set PCINTO (digital input 8) to trigger an
interrupt on state change.

PCMSKO |= (1 << PCINT1); // set PCINTI (digital input 9)to trigger an
interrupt on state change.

PCMSKO |= (1 << PCINT2); // set PCINT2 (digital input 10)to trigger an
interrupt on state change.

PCMSKO |= (1 << PCINT3); /I set PCINT3 (digital input 11)to trigger an
interrupt on state change.

for(data = 0; data <= 35; data++)eeprom_data[data] = EEPROM.read(data); //Read EEPROM for
faster data access

gyro_address = eeprom_data[32]; //Store the gyro address in the variable.

set_gyro_registers(); //Set the specific gyro registers.

//Check the EEPROM signature to make sure that the setup program is executed.
while(eeprom_data[33] !="]J" || eeprom_data[34] !="M' || eeprom_data[35] !="'B'){

delay(500); //Wait for 500ms.
digital Write(12, !digitalRead(12)); //Change the led status to indicate error.
}
wait_for receiver(); //Wait until the receiver is active.
zero_timer = micros(); //Set the zero_timer for the first loop.
while(Serial.available())data = Serial.read(); //Empty the serial buffer.
data =0; //Set the data variable back to zero.
§
//Main program loop
void loop(){
while(zero timer + 4000 > micros()); //Start the pulse after 4000 micro seconds.

zero_timer = micros(); //Reset the zero timer.

if(Serial.available() > 0){

data = Serial.read(); //Read the incomming byte.

delay(100); //Wait for any other bytes to come in
while(Serial.available() > 0)loop counter = Serial.read(); //Empty the Serial buffer.
new_function request = true; //Set the new request flag.

loop counter = 0; //Reset the loop counter variable.

cal_int =0; //Reset the cal int variable to undo the calibration.
start = 0; //Set start to 0.

first _angle = false; //Set first_angle to false.

//Confirm the choice on the serial monitor.

if(data == 'r')Serial.println("Reading receiver signals.");

if(data == "a")Serial.println("Print the quadcopter angles.");

if(data == "a")Serial.println("Gyro calibration starts in 2 seconds (don't move the quadcopter).");
if(data == "1")Serial.printin("Test motor 1 (right front CCW.)");

if(data == '2")Serial.println("Test motor 2 (right rear CW.)");

if(data == '3")Serial.println("Test motor 3 (left rear CCW.)");

if(data == '4")Serial.printin("Test motor 4 (left front CW.)");

if(data =="'5")Serial.println("Test all motors together");

//Let's create a small delay so the message stays visible for 2.5 seconds.
//We don't want the ESC's to beep and have to send a 1000us pulse to the ESC's.

for(vibration counter = 0; vibration counter < 625; vibration counter++){ //Do this loop 625 times
delay(3); //Wait 3000us.
esc_1=1000; //Set the pulse for ESC 1 to 1000us.
esc_2=1000; //Set the pulse for ESC 1 to 1000us.
esc_3=1000; //Set the pulse for ESC 1 to 1000us.
esc_4=1000; //Set the pulse for ESC 1 to 1000us.
esc_pulse output(); //Send the ESC control pulses.
b
vibration counter = 0; //Reset the vibration counter variable.
H
receiver _input channel 3 = convert receiver channel(3); //Convert the actual receiver
signals for throttle to the standard 1000 - 2000us.
if(receiver input channel 3 <1025)new_function request = false; //If the throttle is in the lowest

position set the request flag to false.

e,
//Run the ESC calibration program to start with.
T

if(data == 0 && new_function_request == false){ //Only start the calibration mode at

first start.

receiver _input channel 3 = convert receiver channel(3); //Convert the actual receiver
signals for throttle to the standard 1000 - 2000us.

esc_1 =receiver input channel 3; //Set the pulse for motor 1 equal to the
throttle channel.

esc_2 =receiver input channel 3; //Set the pulse for motor 2 equal to the
throttle channel.

esc_3 =receiver input channel 3; //Set the pulse for motor 3 equal to the

throttle channel.
esc_4 =receiver input_channel 3; //Set the pulse for motor 4 equal to the

throttle channel.
esc_pulse output(); //Send the ESC control pulses.

}

T
//When user sends a 'r' print the receiver signals.
s
if(data =="'r'"){

loop counter ++; //Increase the loop counter variable.

receiver _input channel 1 = convert receiver channel(1); //Convert the actual receiver
signals for pitch to the standard 1000 - 2000us.

receiver _input channel 2 = convert receiver channel(2); //Convert the actual receiver
signals for roll to the standard 1000 - 2000us.

receiver _input channel 3 = convert receiver channel(3); //Convert the actual receiver
signals for throttle to the standard 1000 - 2000us.

receiver _input channel 4 = convert receiver channel(4); //Convert the actual receiver

signals for yaw to the standard 1000 - 2000us.

if(loop_counter == 125){ //Print the receiver values when the
loop counter variable equals 250.
print_signals(); //Print the receiver values on the serial monitor.
loop counter = 0; //Reset the loop counter variable.
}

//For starting the motors: throttle low and yaw left (step 1).

if(receiver input channel 3 <1050 && receiver input_channel 4 < 1050)start = 1;

//When yaw stick is back in the center position start the motors (step 2).

if(start == 1 && receiver _input channel 3 <1050 && receiver input channel 4 > 1450)start = 2;
//Stopping the motors: throttle low and yaw right.

if(start == 2 && receiver _input channel 3 <1050 && receiver input channel 4 > 1950)start = 0;

esc_1=1000; //Set the pulse for ESC 1 to 1000us.
esc_2=1000; //Set the pulse for ESC 1 to 1000us.
esc_3=1000; //Set the pulse for ESC 1 to 1000us.
esc_4=1000; //Set the pulse for ESC 1 to 1000us.
esc_pulse output(); //Send the ESC control pulses.

}

s

//When user sends a 'l, 2, 3, 4 or 5 test the motors.

T

if(data =="1"|| data == '2' || data =='3' || data =="4' || data == "'5"){ //If motor 1, 2, 3 or 4 is selected by the
user.

loop counter ++; //Add 1 to the loop counter variable.
if(new_function_request == true && loop counter == 250){ //Wait for the throttle to be set
to 0.
Serial.print("Set throttle to 1000 (low). It's now set to: "); //Print message on the serial monitor.
Serial.println(receiver input channel 3); //Print the actual throttle position.
loop counter = 0; //Reset the loop counter variable.
h
if(new_function_request == false){ //When the throttle was in the lowest

position do this.

receiver _input channel 3 = convert receiver channel(3); //Convert the actual receiver
signals for throttle to the standard 1000 - 2000us.

if(data =="1"|| data =="'S")esc_1 =receiver_input channel 3; //Tf motor 1 is requested set the
pulse for motor 1 equal to the throttle channel.

else esc_1=1000; //Tf motor 1 is not requested set the pulse for the
ESC to 1000us (off).

if(data =="2'|| data =='S")esc_2 = receiver_input channel 3; //Tf motor 2 is requested set the
pulse for motor 1 equal to the throttle channel.

else esc_2 =1000; //TIf motor 2 is not requested set the pulse for the
ESC to 1000us (off).

if(data =="'3"|| data =='S")esc_3 =receiver_input channel 3; //Tf motor 3 is requested set the
pulse for motor 1 equal to the throttle channel.

else esc_3 =1000; //TIf motor 3 is not requested set the pulse for the
ESC to 1000us (off).

if(data =="'4'|| data =='S")esc_4 = receiver_input channel 3; //Tf motor 4 is requested set the
pulse for motor 1 equal to the throttle channel.

else esc_4 =1000; //1f motor 4 is not requested set the pulse for the

ESC to 1000us (off).

esc_pulse output(); //Send the ESC control pulses.
//For balancing the propellors it's possible to use the accelerometer to measure the vibrations.
if(eeprom_data[31] == 1){ //The MPU-6050 1is installed
Wire.beginTransmission(gyro_address); //Start communication with the gyro.
Wire.write(0x3B); //Start reading (@ register 43h and auto increment
with every read.
Wire.endTransmission(); //End the transmission.
Wire.requestFrom(gyro address,6); //Request 6 bytes from the gyro.
while(Wire.available() < 6); //Wait until the 6 bytes are received.
acc_x = Wire.read()<<8|Wire.read(); //Add the low and high byte to the acc_x
variable.
acc_y = Wire.read()<<8|Wire.read(); //Add the low and high byte to the acc_y
variable.
acc_z = Wire.read()<<8|Wire.read(); //Add the low and high byte to the acc z
variable.
acc_total vector[0] = sqrt((acc_x*acc x)+(acc_y*acc y)+(acc_z*acc z)); //Calculate the total

accelerometer vector.

acc_av_vector = acc_total vector[0]; //Copy the total vector to the
accelerometer average vector variable.

for(start = 16; start > 0; start--){ //Do this loop 16 times to create an array of
accelrometer vectors.
acc_total vector[start] = acc total vector[start - 1]; //Shift every variable one position up in
the array.
acc_av_vector += acc_total vector[start]; //Add the array value to the
acc_av_vector variable.
}
acc_av_vector /= 17; //Divide the acc_av_vector by 17 to get the

avarage total accelerometer vector.

if(vibration counter < 20){ //If the vibration counter is less than 20 do this.

vibration counter ++; //Increment the vibration counter variable.
vibration_total result += abs(acc total vector[0] - acc_av_vector); //Add the absolute difference
between the avarage vector and current vector to the vibration total result variable.
}
else{
vibration counter = 0; //If the vibration counter is equal or larger than
20 do this.
Serial.println(vibration total result/50); //Print the total accelerometer vector
divided by 50 on the serial monitor.
vibration_total result = 0; //Reset the vibration total result variable.
}
}

}

}
T T

//When user sends a 'a' display the quadcopter angles.
e,
if(data =="a"){

if(cal_int !=2000){
Serial.print("Calibrating the gyro");
//Let's take multiple gyro data samples so we can determine the average gyro offset (calibration).
for (cal_int = 0; cal int <2000 ; cal int ++){ //Take 2000 readings for calibration.
if(cal_int % 125 == 0){
digitalWrite(12, !digitalRead(12)); //Change the led status to indicate calibration.
Serial.print(".");

b

gyro_signalen(); //Read the gyro output.

gyro_axis_cal[l] += gyro axis[1]; //Ad roll value to gyro roll cal.

gyro_axis_cal[2] += gyro_axis[2]; //Ad pitch value to gyro pitch_cal.

gyro_axis_cal[3] += gyro_axis[3]; //Ad yaw value to gyro yaw cal.

//We don't want the esc's to be beeping annoyingly. So let's give them a 1000us puls while calibrating the
gyro.

PORTD |=B11110000; //Set digital poort 4, 5, 6 and 7 high.

delayMicroseconds(1000); //Wait 1000us.

PORTD &= B00001111; //Set digital poort 4, 5, 6 and 7 low.

delay(3); //Wait 3 milliseconds before the next loop.

}

Serial.println(".");
//Now that we have 2000 measures, we need to devide by 2000 to get the average gyro offset.

gyro_axis_cal[1] /=2000; //Divide the roll total by 2000.
gyro_axis_cal[2] /= 2000; //Divide the pitch total by 2000.
gyro_axis_cal[3] /= 2000; //Divide the yaw total by 2000.

b

else{
///We don't want the esc's to be beeping annoyingly. So let's give them a 1000us puls while calibrating the

gyro.

PORTD |=B11110000; //Set digital poort 4, 5, 6 and 7 high.
delayMicroseconds(1000); //Wait 1000us.

PORTD &= B00001111; //Set digital poort 4, 5, 6 and 7 low.

//Let's get the current gyro data.
gyro_signalen();

//Gyro angle calculations
//0.0000611 =1/ (250Hz / 65.5)

angle pitch += gyro pitch * 0.0000611; //Calculate the traveled pitch angle and
add this to the angle pitch variable.
angle roll += gyro roll * 0.0000611; //Calculate the traveled roll angle and add

this to the angle roll variable.

//0.000001066 = 0.0000611 * (3.142(PI) / 180degr) The Arduino sin function is in radians

angle pitch -= angle roll * sin(gyro _yaw * 0.000001066); //If the IMU has yawed transfer
the roll angle to the pitch angel.
angle roll += angle pitch * sin(gyro yaw * 0.000001066); //Tf the IMU has yawed transfer

the pitch angle to the roll angel.

//Accelerometer angle calculations
acc_total vector[0] = sqrt((acc_x*acc x)+(acc y*acc y)+(acc z*acc z)); //Calculate the total
accelerometer vector.

//57.296 =1/ (3.142 / 180) The Arduino asin function is in radians
angle pitch acc = asin((float)acc_y/acc total vector[0])* 57.296; //Calculate the pitch angle.
angle roll acc = asin((float)acc_x/acc_total vector[0])* -57.296; //Calculate the roll angle.

if(!first_angle){

angle pitch = angle pitch_acc; //Set the pitch angle to the accelerometer
angle.
angle roll = angle roll acc; //Set the roll angle to the accelerometer angle.
first_angle = true;
}
else{
angle pitch = angle pitch * 0.9996 + angle pitch _acc * 0.0004; //Correct the drift of the gyro
pitch angle with the accelerometer pitch angle.
angle roll = angle roll * 0.9996 + angle roll acc * 0.0004; //Correct the drift of the gyro roll
angle with the accelerometer roll angle.
}

//We can't print all the data at once. This takes to long and the angular readings will be off.
if(loop_counter == 0)Serial.print("Pitch: ");

if(loop_counter == 1)Serial.print(angle pitch ,0);

if(loop_counter == 2)Serial.print(" Roll: ");

if(loop_counter == 3)Serial.print(angle roll ,0);

if(loop_counter == 4)Serial.print(" Yaw: ");

if(loop_counter == 5)Serial.println(gyro_yaw / 65.5 ,0);

loop counter ++;
if(loop_counter == 60)loop counter = 0;
b
b
}

//This routine is called every time input 8, 9, 10 or 11 changed state.

ISR(PCINTO vect){
current_time = micros();

//Channel 1

if(PINB & B00000001){
if(last_channel 1 == 0){
last channel 1=1;
timer 1 = current_time;
b

h
else if(last_channel 1==1){

last channel 1=0;
receiver_input[1] = current time - timer 1;

}

//Ts input 8 high?
//Input 8 changed from O to 1.
//Remember current input state.
//Set timer 1 to current time.

//Input 8 is not high and changed from 1 to 0.
//Remember current input state.
//Channel 1 is current_time - timer 1.

//Channel 2
if(PINB & B00000010){
if(last_channel 2 == 0){
last channel 2 =1;
timer 2 = current_time;
b

h
else if(last_channel 2 == 1){

last channel 2 = 0;
receiver_input[2] = current_time - timer 2;

}

//Ts input 9 high?
//Input 9 changed from O to 1.
//Remember current input state.
//Set timer_2 to current time.

//Input 9 is not high and changed from 1 to 0.
//Remember current input state.
//Channel 2 is current_time - timer 2.

//Channel 3

if(PINB & B00000100){
if(last_channel 3 == 0){
last channel 3 =1;
timer 3 = current_time;
b

h
else if(last_channel 3 == 1){

last channel 3 = 0;
receiver_input[3] = current_time - timer 3;

}

//Ts input 10 high?
//Input 10 changed from 0 to 1.
//Remember current input state.
//Set timer_3 to current time.

//Input 10 is not high and changed from 1 to 0.
//Remember current input state.
//Channel 3 is current_time - timer 3.

//Channel 4

if(PINB & B00001000){
if(last_channel 4 == 0){
last channel 4 =1;
timer_ 4 = current_time;
b

b
else if(last_channel 4 == 1){

last channel 4 = 0;
receiver_input[4] = current_time - timer 4;
b
b

//Ts input 11 high?
//Input 11 changed from 0 to 1.
//Remember current input state.
//Set timer_4 to current time.

//Input 11 is not high and changed from 1 to 0.
//Remember current input state.
//Channel 4 is current_time - timer 4.

//Checck if the receiver values are valid within 10 seconds

void wait_for receiver(){
byte zero = 0; //Set all bits in the variable zero to 0
while(zero < 15){ //Stay in this loop until the 4 lowest bits are set
if(receiver input[1] <2100 && receiver input[1] > 900)zero |[= 0b00000001; //Set bit 0 if the receiver pulse
1 is within the 900 - 2100 range
if(receiver input[2] < 2100 && receiver input[2] > 900)zero |[= 0b00000010; //Set bit 1 if the receiver pulse
2 is within the 900 - 2100 range
if(receiver input[3] <2100 && receiver input[3] > 900)zero |[= 0b00000100; //Set bit 2 if the receiver pulse
3 is within the 900 - 2100 range
if(receiver input[4] <2100 && receiver input[4] > 900)zero |[= 0b00001000; //Set bit 3 if the receiver pulse
4 is within the 900 - 2100 range
delay(500); //Wait 500 milliseconds

h
h

//This part converts the actual receiver signals to a standardized 1000 — 1500 — 2000 microsecond value.
//The stored data in the EEPROM is used.
int convert_receiver channel(byte function){

byte channel, reverse; //First we declare some local variables

int low, center, high, actual;

int difference;

channel = eeprom_data|function + 23] & 0b00000111; //What channel corresponds with the
specific function

if(eeprom_data[function + 23] & 0b10000000)reverse = 1; //Reverse channel when most
significant bit is set

else reverse = 0; //If the most significant is not set there is no reverse

actual = receiver_input[channel]; //Read the actual receiver value for the

corresponding function
low = (eeprom_data[channel * 2 + 15] << 8) | eeprom_data[channel * 2 + 14]; //Store the low value for the

specific receiver input channel

center = (eeprom_data[channel * 2 - 1] << 8) | eeprom_data[channel * 2 - 2]; //Store the center value for the
specific receiver input channel

high = (eeprom_data[channel * 2 + 7] << 8) | eeprom_data[channel * 2 + 6]; //Store the high value for the
specific receiver input channel

if(actual < center){ //The actual receiver value is lower than the center value
if(actual < low)actual = low; //Limit the lowest value to the value that was
detected during setup
difference = ((long)(center - actual) * (long)500) / (center - low); //Calculate and scale the actual value to
a 1000 - 2000us value
if(reverse == 1)return 1500 + difference; //1f the channel is reversed
else return 1500 - difference; //If the channel is not reversed
h
else if(actual > center) { /IThe actual receiver value is higher than
the center value
if(actual > high)actual = high; //Limit the lowest value to the value that was

detected during setup

difference = ((long)(actual - center) * (long)500) / (high - center); //Calculate and scale the actual value to
a 1000 - 2000us value

if(reverse == 1)return 1500 - difference; //If the channel is reversed

}

else return 1500 + difference; //If the channel is not reversed

}

else return 1500;

void print_signals(){

}

Serial.print("Start:");
Serial.print(start);

Serial.print(" Roll:");

if(receiver input channel 1 - 1480 < 0)Serial.print("<<<");
else if(receiver input channel 1 - 1520 > 0)Serial.print(">>>");
else Serial.print("-+-");

Serial.print(receiver _input channel 1);

Serial.print(" Pitch:");

if(receiver input channel 2 - 1480 < 0)Serial.print("*");

else if(receiver input channel 2 - 1520 > 0)Serial.print("vvv");
else Serial.print("-+-");

Serial.print(receiver _input channel 2);

Serial.print(" Throttle:");

if(receiver input channel 3 - 1480 < 0)Serial.print("vvv");
else if(receiver input channel 3 - 1520 > 0)Serial.print("*"");
else Serial.print("-+-");

Serial.print(receiver _input channel 3);

Serial.print(" Yaw:");
if(receiver input channel 4 - 1480 < 0)Serial.print("<<<");

else if(receiver_input_channel 4 - 1520 > 0)Serial.print(">>>");

else Serial.print("-+-");
Serial.println(receiver input channel 4);

void esc_pulse output(){

zero_timer = micros();

PORTD |=B11110000; //Set port 4, 5, 6 and 7 high at once

timer_channel 1=-esc 1 + zero timer; //Calculate the time when digital port 4 is set low.

timer_channel 2 =esc 2 + zero timer; //Calculate the time when digital port 5 is set low.

timer_channel 3 =esc 3 + zero_timer; //Calculate the time when digital port 6 is set low.

timer_channel 4 =esc 4 + zero timer; //Calculate the time when digital port 7 is set low.

while(PORTD >= 16){ //Execute the loop until digital port 4 to 7 is low.
esc_loop timer = micros(); //Check the current time.

if(timer _channel 1 <=esc loop timer)PORTD &=BI11101111;
port 4 is set low.
if(timer _channel 2 <=esc loop timer)PORTD &=B11011111;
port 5 is set low.
if(timer _channel 3 <=esc loop timer)PORTD &=B10111111;
port 6 is set low.
if(timer channel 4 <=esc loop timer)PORTD &=BO1111111;
port 7 is set low.

//When the delay time is expired, digital
//When the delay time is expired, digital
//When the delay time is expired, digital

//When the delay time is expired, digital

h
h

void set_gyro registers(){
//Setup the MPU-6050
if(eeprom_data[31] == 1){
Wire.beginTransmission(gyro_address);
search.
Wire.write(0x6B);
Wire.write(0x00);
Wire.endTransmission();

Wire.beginTransmission(gyro address);
search.

Wire.write(0x1B);

Wire.write(0x08);

Wire.endTransmission();

Wire.beginTransmission(gyro_address);
search.

Wire.write(0x1C);

Wire.write(0x10);

Wire.endTransmission();

//Start communication with the address found during

//We want to write to the PWR_MGMT 1 register (6B hex)
//Set the register bits as 00000000 to activate the gyro
//End the transmission with the gyro.

//Start communication with the address found during

//We want to write to the GYRO CONFIG register (1B hex)
//Set the register bits as 00001000 (500dps full scale)
//End the transmission with the gyro

//Start communication with the address found during
//We want to write to the ACCEL CONFIG register (1A hex)

//Set the register bits as 00010000 (+/- 8g full scale range)
//End the transmission with the gyro

//Let's perform a random register check to see if the values are written correct

Wire.beginTransmission(gyro_address);
search

Wire.write(0x1B);

Wire.endTransmission();

Wire.requestFrom(gyro address, 1);

while(Wire.available() < 1);

if(Wire.read() != 0x08){
digitalWrite(12,HIGH);
while(1)delay(10);

b

Wire.beginTransmission(gyro_address);
search

Wire.write(0x1A);

Wire.write(0x03);
to ~43Hz)

Wire.endTransmission();

h
h

void gyro_signalen(){
//Read the MPU-6050
if(eeprom_data[31] == 1){
Wire.beginTransmission(gyro address);
Wire.write(0x3B);
read.

//Start communication with the address found during

//Start reading @ register 0x1B
//End the transmission
//Request 1 bytes from the gyro
//Wait until the 6 bytes are received
//Check if the value is 0x08
//Turn on the warning led
//Stay in this loop for ever

//Start communication with the address found during

//We want to write to the CONFIG register (1A hex)
//Set the register bits as 00000011 (Set Digital Low Pass Filter

//End the transmission with the gyro

//Start communication with the gyro.
//Start reading @ register 43h and auto increment with every

Wire.endTransmission();
Wire.requestFrom(gyro address,14);
while(Wire.available() < 14);
acc_axis[1] = Wire.read()<<8|Wire.read();
acc_axis[2] = Wire.read()<<8|Wire.read();
acc_axis[3] = Wire.read()<<8|Wire.read();
temperature = Wire.read()<<8|Wire.read();
variable.
gyro_axis[1] = Wire.read()<<8|Wire.read();
gyro_axis[2] = Wire.read()<<8|Wire.read();
gyro_axis[3] = Wire.read()<<8|Wire.read();
b

if(cal_int == 2000){
gyro_axis[1] -= gyro_axis cal[l];
gyro_axis[2] -= gyro_axis_cal[2];
gyro_axis[3] -= gyro_axis_cal[3];
h

gyro_roll = gyro axis[eeprom_data[28] & 0b00000011];

stored in the EEPROM.

if(eeprom_data[28] & 0b10000000)gyro roll *= -1;
is set.

gyro_pitch = gyro axis[eeprom_data[29] & 0b00000011];

stored in the EEPROM.
if(eeprom_data[29] & 0b10000000)gyro pitch *= -1
29 is set.

gyro_yaw = gyro_axis[eeprom_data[30] & 0b00000011];

stored in the EEPROM.
if(eeprom_data[30] & 0b10000000)gyro yaw *= -1;
30 is set.

acc_x = acc_axis[eeprom_data[29] & 0b00000011];
the EEPROM.

if(eeprom_data[29] & 0b10000000)acc x *=-1;

acc_y = acc_axis[eeprom_data[28] & 0b00000011];
the EEPROM.

if(eeprom_data[28] & 0b10000000)acc y *=-1;

acc_z = acc_axis[eeprom_data[30] & 0b00000011];
the EEPROM.

if(eeprom_data[30] & 0b10000000)acc z *= -1;
b

//End the transmission.

//Request 14 bytes from the gyro.

//Wait until the 14 bytes are received.

//Add the low and high byte to the acc_x variable.
//Add the low and high byte to the acc_y variable.
//Add the low and high byte to the acc_z variable.
//Add the low and high byte to the temperature
//Read high and low part of the angular data.

//Read high and low part of the angular data.
//Read high and low part of the angular data.

//Only compensate after the calibration.
//Only compensate after the calibration.
//Only compensate after the calibration.
//Set gyro_roll to the correct axis that was
//Invert gyro_roll if the MSB of EEPROM bit 28
//Set gyro_pitch to the correct axis that was
; //Invert gyro_pitch if the MSB of EEPROM bit

//Set gyro_yaw to the correct axis that was

//Invert gyro_yaw if the MSB of EEPROM bit

//Set acc_x to the correct axis that was stored in

//Invert acc_x if the MSB of EEPROM bit 29 is set.
//Set acc_y to the correct axis that was stored in

//Invert acc_y if the MSB of EEPROM bit 28 is set.
//Set acc_z to the correct axis that was stored in

//Invert acc_z if the MSB of EEPROM bit 30 is set.

