T

/ITerms of use

T

//ITHE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
//IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
//IFITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
//AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
//ILIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
//OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
//ITHE SOFTWARE.

T

//Safety note

T

//Always remove the propellers and stay away from the motors unless you

/lare 100% certain of what you are doing.
e

#include <Wire.h> //Include the Wire.h library so we can communicate with the gyro.
#include <EEPROM .h> //Include the EEPROM.h library so we can store information onto the
EEPROM

T 1T
//PID gain and limit settings
T T

float pid p gain roll = 0; //Gain setting for the roll P-controller

float pid i gain roll = 0.04; //Gain setting for the roll I-controller

float pid d_gain roll = 18.0; //Gain setting for the roll D-controller

int pid max_roll =400; //Maximum output of the PID-controller (+/-)

float pid p gain pitch = pid p gain roll; //Gain setting for the pitch P-controller.
float pid i1 gain pitch = pid i gain roll; //Gain setting for the pitch I-controller.
float pid d gain pitch = pid d gain roll; //Gain setting for the pitch D-controller.

int pid max_pitch = pid max_roll; //Maximum output of the PID-controller (+/-)
float pid p gain yaw = 4.0; //Gain setting for the pitch P-controller. /4.0
float pid i1 gain_yaw = 0.02; //Gain setting for the pitch I-controller. //0.02
float pid d gain yaw = 0.0; //Gain setting for the pitch D-controller.

int pid max_yaw = 400; //Maximum output of the PID-controller (+/-)
boolean auto level = true; //Auto level on (true) or off (false)

T
//Declaring global variables

T T
byte last channel 1, last channel 2, last channel 3, last channel 4;

byte eeprom_data[36];

byte highByte, lowByte;

volatile int receiver input channel 1, receiver input channel 2, receiver input channel 3,
receiver input channel 4;

int counter channel 1, counter channel 2, counter channel 3, counter channel 4, loop counter;
intesc 1,esc 2,esc 3,esc 4;

int throttle, battery voltage;

int cal_int, start, gyro_address;

int receiver _input[5];

int temperature;

int acc_axis[4], gyro_axis[4];

float roll level adjust, pitch level adjust;

long acc_x, acc_y, acc_z, acc_total vector;

unsigned long timer channel 1, timer channel 2, timer channel 3, timer channel 4, esc timer,
esc_loop timer;

unsigned long timer 1, timer 2, timer 3, timer 4, current time;

unsigned long loop timer;

double gyro_pitch, gyro roll, gyro yaw;

double gyro_axis cal[4];

float pid_error temp;

float pid 1 mem roll, pid_roll setpoint, gyro roll input, pid output roll, pid last roll d error;
float pid 1 mem_pitch, pid_pitch_setpoint, gyro pitch input, pid output pitch, pid last pitch d error;
float pid 1 mem_yaw, pid yaw_setpoint, gyro yaw_input, pid output yaw, pid last yaw d error;
float angle roll acc, angle pitch acc, angle pitch, angle roll;

boolean gyro angles_set;

T 1T
//Setup routine
T T
void setup(){

Serial.begin(57600);

//Copy the EEPROM data for fast access data.

for(start = 0; start <= 35; start++)eeprom_data[start] = EEPROM.read(start);

start = 0; //Set start back to zero.

gyro_address = eeprom_data[32]; //Store the gyro address in the variable.
Wire.begin(); //Start the I12C as master.

TWBR = 12; //Set the 12C clock speed to 400kHz.

//Arduino (Atmega) pins default to inputs, so they don't need to be explicitly declared as inputs.

DDRD |=B11110000; //Configure digital poort 4, 5, 6 and 7 as output.
DDRB |= B00110000; //Configure digital poort 12 and 13 as output.

//Use the led on the Arduino for startup indication.
digital Write(12,HIGH); //Turn on the warning led.

//Check the EEPROM signature to make sure that the setup program is executed.
while(eeprom_data[33] !="]" || eeprom_data[34] !="'M' || eeprom_data[35] !="'B')delay(10);

//The flight controller needs the MPU-6050 with gyro and accelerometer
//1f setup is completed without MPU-6050 stop the flight controller program
if(eeprom_data[31] == 2 || eeprom_data[31] == 3)delay(10);

set_gyro_registers(); //Set the specific gyro registers.

for (cal_int =0; cal int <1250 ; cal int ++){ //Wait 5 seconds before continuing.
PORTD |=B11110000; //Set digital poort 4, 5, 6 and 7 high.

delayMicroseconds(1000); //Wait 1000us.

PORTD &= B00001111; //Set digital poort 4, 5, 6 and 7 low.
delayMicroseconds(3000); //Wait 3000us.
H
//Let's take multiple gyro data samples so we can determine the average gyro offset (calibration).
for (cal_int = 0; cal int <2000 ; cal int ++){ //Take 2000 readings for calibration.
if(cal_int % 15 == 0)digitalWrite(12, !digitalRead(12)); //Change the led status to indicate
calibration.
gyro_signalen(); //Read the gyro output.
gyro_axis_cal[l] += gyro_axis[1]; //Ad roll value to gyro roll cal.
gyro_axis_cal[2] += gyro_axis[2]; //Ad pitch value to gyro pitch cal.
gyro_axis_cal[3] += gyro_axis[3]; //Ad yaw value to gyro yaw_cal.
//We don't want the esc's to be beeping annoyingly. So let's give them a 1000us puls while calibrating the
gyro.
PORTD |=B11110000; //Set digital poort 4, 5, 6 and 7 high.
delayMicroseconds(1000); //Wait 1000us.
PORTD &= B00001111; //Set digital poort 4, 5, 6 and 7 low.
delay(3); //Wait 3 milliseconds before the next loop.
H
//Now that we have 2000 measures, we need to devide by 2000 to get the average gyro offset.
gyro_axis_cal[1] /=2000; //Divide the roll total by 2000.
gyro_axis_cal[2] /=2000; //Divide the pitch total by 2000.
gyro_axis_cal[3] /= 2000; //Divide the yaw total by 2000.
PCICR |= (1 << PCIEO0); //Set PCIEO to enable PCMSKUO scan.
PCMSKO |= (1 << PCINTO); //Set PCINTO (digital input 8) to trigger an
interrupt on state change.
PCMSKO |= (1 << PCINT1); //Set PCINTTI (digital input 9)to trigger an
interrupt on state change.
PCMSKO |= (1 << PCINT2); //Set PCINT2 (digital input 10)to trigger an
interrupt on state change.
PCMSKO |= (1 << PCINT3); //Set PCINT3 (digital input 11)to trigger an

interrupt on state change.

//Wait until the receiver is active and the throtle is set to the lower position.
while(receiver input channel 3 <990 || receiver input channel 3 > 1020 || receiver input channel 4 <

1400){

receiver _input channel 3 = convert receiver channel(3); //Convert the actual receiver signals for
throttle to the standard 1000 - 2000us

receiver _input channel 4 = convert receiver channel(4); //Convert the actual receiver signals for
yaw to the standard 1000 - 2000us

start ++; //While waiting increment start whith every loop.

//We don't want the esc's to be beeping annoyingly. So let's give them a 1000us puls while waiting for the
receiver inputs.

PORTD |=B11110000; //Set digital poort 4, 5, 6 and 7 high.

delayMicroseconds(1000); //Wait 1000us.

PORTD &= B00001111; //Set digital poort 4, 5, 6 and 7 low.

delay(3); //Wait 3 milliseconds before the next loop.

if(start == 125){ //Every 125 loops (500ms).
digitalWrite(12, !digitalRead(12)); //Change the led status.

start = 0; //Start again at 0.

h
h

start = 0; //Set start back to 0.

//Load the battery voltage to the battery voltage variable.

//65 is the voltage compensation for the diode.

//12.6V equals ~5V @ Analog 0.

//12.6V equals 1023 analogRead(0).

//1260 /1023 = 1.2317.

//The variable battery voltage holds 1050 if the battery voltage is 10.5V.
battery voltage = (analogRead(0) + 65) * 1.2317;

loop_timer = micros(); //Set the timer for the next loop.

//When everything is done, turn off the led.

digital Write(12,LOW); //Turn off the warning led.
h
1111111110001
//Main program loop
1111111111111

void loop(){

//65.5 = 1 deg/sec (check the datasheet of the MPU-6050 for more information).

gyro_roll input = (gyro roll input * 0.7) + ((gyro_roll / 65.5) * 0.3); //Gyro pid input is deg/sec.
gyro_pitch input = (gyro_pitch_input * 0.7) + ((gyro_pitch / 65.5) * 0.3);//Gyro pid input is deg/sec.
gyro _yaw_input = (gyro_yaw_input * 0.7) + ((gyro_yaw / 65.5) * 0.3); //Gyro pid input is deg/sec.

N s
//This is the added IMU code from the videos:
//https://youtu.be/4BolES8Y QwMS

//https://youtu.be/;-kEOAMEWy4

T T

//Gyro angle calculations
//0.0000611 =1/ (250Hz / 65.5)

angle pitch += gyro pitch * 0.0000611; //Calculate the traveled pitch angle and add this
to the angle pitch variable.
angle roll += gyro roll * 0.0000611; //Calculate the traveled roll angle and add this to

the angle roll variable.

//0.000001066 = 0.0000611 * (3.142(PI) / 180degr) The Arduino sin function is in radians

angle pitch -= angle roll * sin(gyro_yaw * 0.000001066); //1f the IMU has yawed transfer the roll
angle to the pitch angel.
angle roll += angle pitch * sin(gyro _yaw * 0.000001066); //1f the IMU has yawed transfer the pitch

angle to the roll angel.

//Accelerometer angle calculations
acc_total vector = sqrt((acc_x*acc_x)+(acc_y*acc y)+(acc_z*acc z)); //Calculate the total accelerometer
vector.

if(abs(acc_y) <acc total vector){ //Prevent the asin function to produce a NaN

angle pitch acc = asin((float)acc_y/acc total vector)* 57.296; //Calculate the pitch angle.

h
if(abs(acc_x) < acc_total vector){ //Prevent the asin function to produce a NaN
angle roll acc = asin((float)acc_x/acc_total vector)* -57.296; //Calculate the roll angle.
h
//Place the MPU-6050 spirit level and note the values in the following two lines for calibration.
angle pitch acc -=0.0; //Accelerometer calibration value for pitch.
angle roll acc -=0.0; //Accelerometer calibration value for roll.
angle pitch = angle pitch * 0.9996 + angle pitch _acc * 0.0004; //Correct the drift of the gyro pitch
angle with the accelerometer pitch angle.
angle roll = angle roll * 0.9996 + angle roll acc * 0.0004; //Correct the drift of the gyro roll angle
with the accelerometer roll angle.
pitch_level adjust = angle pitch * 15; //Calculate the pitch angle correction
roll level adjust=angle roll * 15; //Calculate the roll angle correction
if(lauto _level){ //1f the quadcopter is not in auto-level mode
pitch_level adjust = 0; //Set the pitch angle correction to zero.
roll level adjust=0; //Set the roll angle correcion to zero.
H

//For starting the motors: throttle low and yaw left (step 1).

if(receiver input channel 3 <1050 && receiver input _channel 4 < 1050)start = 1;

//When yaw stick is back in the center position start the motors (step 2).

if(start == 1 && receiver input channel 3 <1050 && receiver input channel 4 > 1450){
start = 2;

angle pitch = angle pitch_acc; //Set the gyro pitch angle equal to the accelerometer
pitch angle when the quadcopter is started.

angle roll = angle roll acc; //Set the gyro roll angle equal to the accelerometer
roll angle when the quadcopter is started.

gyro_angles set = true; //Set the IMU started flag.

//Reset the PID controllers for a bumpless start.
pid 1 mem roll =0;
pid last roll d error =0;
pid 1 mem pitch =0;
pid last pitch d error = 0;
pid 1 mem yaw = 0;
pid last yaw d error = 0;
}
//Stopping the motors: throttle low and yaw right.
if(start == 2 & & receiver input channel 3 <1050 && receiver input channel 4 > 1950)start = 0;

//The PID set point in degrees per second is determined by the roll receiver input.

//In the case of deviding by 3 the max roll rate is aprox 164 degrees per second ((500-8)/3 = 164d/s).
pid roll setpoint = 0;

//We need a little dead band of 16us for better results.

if(receiver input channel 1> 1508)pid roll setpoint = receiver input channel 1 - 1508;

else if(receiver input channel 1< 1492)pid roll setpoint = receiver input channel 1 - 1492;

pid_roll setpoint -=roll level adjust; //Subtract the angle correction from the
standardized receiver roll input value.
pid_roll setpoint /= 3.0; //Divide the setpoint for the PID roll controller by 3 to

get angles in degrees.

//The PID set point in degrees per second is determined by the pitch receiver input.

//In the case of deviding by 3 the max pitch rate is aprox 164 degrees per second ((500-8)/3 = 164d/s).
pid pitch setpoint = 0;

//We need a little dead band of 16us for better results.

if(receiver input channel 2 > 1508)pid pitch_setpoint = receiver input channel 2 - 1508;

else if(receiver input channel 2 < 1492)pid pitch_setpoint = receiver input channel 2 - 1492;

pid pitch setpoint -= pitch_level adjust; //Subtract the angle correction from the
standardized receiver pitch input value.
pid pitch setpoint /= 3.0; //Divide the setpoint for the PID pitch controller by 3

to get angles in degrees.

//The PID set point in degrees per second is determined by the yaw receiver input.
//In the case of deviding by 3 the max yaw rate is aprox 164 degrees per second ((500-8)/3 = 164d/s).
pid yaw_setpoint = 0;
//We need a little dead band of 16us for better results.
if(receiver input channel 3 > 1050){ /Do not yaw when turning off the motors.
if(receiver input channel 4 > 1508)pid_yaw_setpoint = (receiver input channel 4 - 1508)/3.0;
else if(receiver input channel 4 <1492)pid yaw_setpoint = (receiver input channel 4 - 1492)/3.0;

}

calculate pid(); //PID inputs are known. So we can calculate the pid
output.

//The battery voltage is needed for compensation.

/IA complementary filter is used to reduce noise.

//0.09853 = 0.08 * 1.2317.

battery voltage = battery voltage * 0.92 + (analogRead(0) + 65) * 0.09853;

//Turn on the led if battery voltage is to low.
if(battery voltage < 1000 && battery voltage > 600)digitalWrite(12, HIGH);

throttle = receiver input channel 3; //We need the throttle signal as a base signal.
if (start == 2){ //The motors are started.
if (throttle > 1800) throttle = 1800; //We need some room to keep full control at full
throttle.

esc_1 = throttle - pid_output pitch + pid output roll - pid _output yaw; //Calculate the pulse for esc 1
(front-right - CCW)

esc_2 = throttle + pid_output pitch + pid_output roll + pid_output yaw; //Calculate the pulse for esc 2
(rear-right - CW)

esc_3 = throttle + pid_output_pitch - pid _output roll - pid output yaw; //Calculate the pulse for esc 3
(rear-left - CCW)

esc_4 = throttle - pid_output pitch - pid_output roll + pid output yaw; //Calculate the pulse for esc 4
(front-left - CW)

/*Serial.println("a");
Serial.println(esc_1);
Serial.println(esc_2);
Serial.println(esc_3);
Serial.println(esc_4);
Serial.println("b");
Serial.println(pid output pitch);
Serial.println(pid output roll);
Serial.println(pid output yaw);
Serial.printin(throttle);*/

if (battery voltage < 1240 && battery voltage > 800){ //1s the battery connected?
esc_1+=esc 1 * ((1240 - battery voltage)/(float)3500); //Compensate the esc-1 pulse for voltage
drop.
esc_2 +=esc 2 * ((1240 - battery voltage)/(float)3500); //Compensate the esc-2 pulse for voltage
drop.
esc_3 +=esc 3 * ((1240 - battery voltage)/(float)3500); //Compensate the esc-3 pulse for voltage
drop.
esc_4 +=esc 4 * ((1240 - battery voltage)/(float)3500); //Compensate the esc-4 pulse for voltage
drop.
b
if (esc_1<1100) esc 1 =1100; //Keep the motors running.

if (esc_ 2 <1100) esc 2=1100;
if (esc_ 3 <1100) esc 3 =1100;
if (esc_ 4 <1100) esc 4 =1100;

if(esc_1>2000)esc_1=2000;

if(esc_2 >2000)esc_2 =2000;

if(esc_3 >2000)esc_3 =2000;

if(esc_4 >2000)esc_4 =2000;
h

else{
esc_1=1000;
esc_2=1000;
esc_3=1000;
esc_ 4 =1000;

h

/*

if(start == 2){
Serial.println("c");
Serial.print(battery voltage,0);
Serial.print(";");
Serial.print(gyro_roll,0);
Serial.print(";");
Serial.print(gyro_pitch,0);
Serial.print(";");
Serial.println(gyro_yaw,0);

//Keep the motors running.
//Keep the motors running.
//Keep the motors running.

//Limit the esc-1 pulse to 2000us.
//Limit the esc-2 pulse to 2000us.
//Limit the esc-3 pulse to 2000us.
//Limit the esc-4 pulse to 2000us.

//1If start is not 2 keep a 1000us pulse for ess-1.
//If start is not 2 keep a 1000us pulse for ess-2.
//1If start is not 2 keep a 1000us pulse for ess-3.
//If start is not 2 keep a 1000us pulse for ess-4.

3 ¥/

s
//Creating the pulses for the ESC's is explained in this video:
//https://youtu.be/fqEkVeqxtU8
s

//Because of the angle calculation the loop time is getting very important. If the loop time is
/longer or shorter than 4000us the angle calculation is off. If you modify the code make sure
//that the loop time is still 4000us and no longer! More information can be found on

//the Q& A page:

if(micros() - loop_timer > 4050)digital Write(12, HIGH); //Turn on the LED if the loop time
exceeds 4050us.

//All the information for controlling the motor's is available.
//The refresh rate is 250Hz. That means the esc's need there pulse every 4ms.

while(micros() - loop_timer < 4000); //We wait until 4000us are passed.

loop_timer = micros(); //Set the timer for the next loop.

PORTD |=B11110000; //Set digital outputs 4,5,6 and 7 high.

timer_channel 1=-esc 1+ loop timer; //Calculate the time of the faling edge of the
esc-1 pulse.

timer_channel 2 =esc 2 + loop timer; //Calculate the time of the faling edge of the
esc-2 pulse.

timer_channel 3 =esc 3 + loop timer; //Calculate the time of the faling edge of the
esc-3 pulse.

timer_channel 4 =esc 4 + loop_timer; //Calculate the time of the faling edge of the
esc-4 pulse.

//There is always 1000us of spare time. So let's do something usefull that is very time consuming.
//Get the current gyro and receiver data and scale it to degrees per second for the pid calculations.
gyro_signalen();

while(PORTD >= 16){ //Stay in this loop until output 4,5,6 and 7 are low.
esc_loop timer = micros(); //Read the current time.
if(timer _channel 1 <=esc loop timer)PORTD &=BI11101111; //Set digital output 4 to low if the
time is expired.
if(timer _channel 2 <=esc loop timer)PORTD &=B11011111; //Set digital output 5 to low if the
time is expired.
if(timer _channel 3 <=esc loop timer)PORTD &=B10111111; //Set digital output 6 to low if the
time is expired.
if(timer channel 4 <=esc loop timer)PORTD &=BO1111111; //Set digital output 7 to low if the
time is expired.
b
b

T
//This routine is called every time input 8, 9, 10 or 11 changed state. This is used to read the receiver signals.

//More information about this subroutine can be found in this video:

//https://youtu.be/bENjl1KQbvo

T T

ISR(PCINTO vect){
current_time = micros();

//Channel 1

if(PINB & B00000001){
if(last_channel 1 == 0){
last channel 1=1;
timer 1 = current_time;
b

h
else if(last_channel 1==1){

last channel 1=0;
receiver_input[1] = current time - timer 1;

}

//Ts input 8 high?
//Input 8 changed from O to 1.
//Remember current input state.
//Set timer 1 to current time.

//Input 8 is not high and changed from 1 to 0.
//Remember current input state.
//Channel 1 is current time - timer 1.

//Channel 2
if(PINB & B00000010){
if(last_channel 2 == 0){
last channel 2 =1;
timer 2 = current_time;
b

h
else if(last_channel 2 == 1){

last channel 2 = 0;
receiver_input[2] = current_time - timer 2;

}

//Is input 9 high?
//Input 9 changed from O to 1.
//Remember current input state.
//Set timer_2 to current time.

//Input 9 is not high and changed from 1 to 0.
//Remember current input state.
//Channel 2 is current_time - timer 2.

//Channel 3

if(PINB & B00000100){
if(last_channel 3 == 0){
last channel 3 =1;
timer 3 = current_time;
b

h
else if(last_channel 3 == 1){

last channel 3 = 0;
receiver_input[3] = current_time - timer 3;

}

//Is input 10 high?
//Input 10 changed from 0 to 1.
//Remember current input state.
//Set timer_3 to current time.

//Input 10 is not high and changed from 1 to 0.
//Remember current input state.
//Channel 3 is current_time - timer 3.

//Channel 4

if(PINB & B00001000){
if(last_channel 4 == 0){
last channel 4 =1;
timer_4 = current_time;
b

h
else if(last_channel 4 == 1){

last channel 4 = 0;
receiver_input[4] = current_time - timer 4;
b
}

//Is input 11 high?
//Input 11 changed from O to 1.
//Remember current input state.
//Set timer_4 to current time.

//Input 11 is not high and changed from 1 to 0.
//Remember current input state.
//Channel 4 is current_time - timer 4.

T T
//Subroutine for reading the gyro
T
void gyro signalen(){

//Read the MPU-6050

if(eeprom_data[31] == 1){

Wire.beginTransmission(gyro_address); //Start communication with the gyro.

Wire.write(0x3B); //Start reading (@ register 43h and auto increment with
every read.

Wire.endTransmission(); //End the transmission.

Wire.requestFrom(gyro address,14); //Request 14 bytes from the gyro.

receiver _input channel 1 = convert receiver channel(1); //Convert the actual receiver signals for
pitch to the standard 1000 - 2000us.

receiver _input channel 2 = convert receiver channel(2); //Convert the actual receiver signals for
roll to the standard 1000 - 2000us.

receiver _input channel 3 = convert receiver channel(3); //Convert the actual receiver signals for
throttle to the standard 1000 - 2000us.

receiver _input channel 4 = convert receiver channel(4); //Convert the actual receiver signals for

yaw to the standard 1000 - 2000us.

while(Wire.available() < 14); //Wait until the 14 bytes are received.
acc_axis[1] = Wire.read()<<8|Wire.read(); //Add the low and high byte to the acc_x
variable.
acc_axis[2] = Wire.read()<<8|Wire.read(); //Add the low and high byte to the acc y
variable.
acc_axis[3] = Wire.read()<<8|Wire.read(); //Add the low and high byte to the acc z
variable.
temperature = Wire.read()<<8|Wire.read(); //Add the low and high byte to the temperature
variable.
gyro_axis[1] = Wire.read()<<8|Wire.read(); //Read high and low part of the angular data.
gyro_axis[2] = Wire.read()<<8|Wire.read(); //Read high and low part of the angular data.
gyro_axis[3] = Wire.read()<<8|Wire.read(); //Read high and low part of the angular data.
h
if(cal_int == 2000){
gyro_axis[1] -= gyro_axis cal[l]; //Only compensate after the calibration.
gyro_axis[2] -= gyro_axis_cal[2]; //Only compensate after the calibration.
gyro_axis[3] -= gyro_axis_cal[3]; //Only compensate after the calibration.
h
gyro_roll = gyro_axis[eeprom_data[28] & 0b00000011]; //Set gyro_roll to the correct axis that
was stored in the EEPROM.
if(eeprom_data[28] & 0b10000000)gyro roll *= -1; //Invert gyro_roll if the MSB of EEPROM
bit 28 is set.
gyro_pitch = gyro axis[eeprom_data[29] & 0b00000011]; //Set gyro_pitch to the correct axis that
was stored in the EEPROM.
if(eeprom_data[29] & 0b10000000)gyro pitch *= -1; //Invert gyro_pitch if the MSB of
EEPROM bit 29 is set.
gyro_yaw = gyro_axis[eeprom_data[30] & 0b00000011]; //Set gyro_yaw to the correct axis that
was stored in the EEPROM.
if(eeprom_data[30] & 0b10000000)gyro yaw *= -1; //Invert gyro_yaw if the MSB of

EEPROM bit 30 is set.

acc_x = acc_axis[eeprom_data[29] & 0b00000011]; //Set acc_x to the correct axis that was
stored in the EEPROM.

if(eeprom_data[29] & 0b10000000)acc x *=-1; //Invert acc_x if the MSB of EEPROM bit
29 is set.

acc_y = acc_axis[eeprom_data[28] & 0b00000011]; //Set acc_y to the correct axis that was
stored in the EEPROM.

if(eeprom_data[28] & 0b10000000)acc y *=-1; //Invert acc_y if the MSB of EEPROM bit
28 1is set.

acc_z = acc_axis[eeprom_data[30] & 0b00000011]; //Set acc_z to the correct axis that was
stored in the EEPROM.

if(eeprom_data[30] & 0b10000000)acc z *= -1; //Invert acc_z if the MSB of EEPROM bit
30 is set.
}

T T
//Subroutine for calculating pid outputs
T
//The PID controllers are explained in part 5 of the YMFC-3D video session:
//https://youtu.be/JBvnB0279-Q
T 1T
void calculate pid(){

//Roll calculations

pid_error temp = gyro roll input - pid roll setpoint;

pid i mem roll +=pid i gain roll * pid error temp;

if(pid_1_mem_roll > pid max_roll)pid i mem roll = pid max roll;

else if(pid 1 mem_ roll <pid max_roll * -1)pid i mem_roll = pid max roll * -1;

pid output roll = pid p gain roll * pid error temp + pid 1 mem roll + pid d gain roll * (pid_error temp -
pid last roll d error);

if(pid_output roll > pid max_roll)pid output roll = pid max roll;

else if(pid_output roll < pid max roll * -1)pid output roll = pid max_ roll * -1;

pid last roll d error = pid error temp;

//Pitch calculations

pid_error temp = gyro pitch input - pid pitch setpoint;

pid 1 mem pitch +=pid i gain pitch * pid error temp;

if(pid 1 mem_pitch > pid max_pitch)pid i mem_pitch = pid max_pitch;

else if(pid 1 mem_pitch < pid max_pitch * -1)pid i mem_pitch = pid max_pitch * -1;

pid output pitch =pid p gain pitch * pid_error temp + pid i mem_pitch + pid d gain_ pitch *
(pid_error temp - pid_last pitch d error);

if(pid_output pitch > pid max pitch)pid output pitch = pid max pitch;

else if(pid_output pitch < pid max pitch * -1)pid output pitch = pid max_pitch * -1;

pid last pitch d error = pid error temp;

/Y aw calculations

pid_error temp = gyro yaw input - pid yaw_setpoint;

pid i mem yaw +=pid i gain yaw * pid error temp;
if(pid 1 mem_yaw > pid max_yaw)pid i mem_ yaw = pid max_yaw;

else if(pid 1 mem_yaw < pid max_yaw * -1)pid 1 mem yaw = pid max yaw * -1;

pid output yaw = pid p gain yaw * pid_error temp + pid 1 mem yaw + pid d gain yaw * (pid_error temp
- pid_last yaw _d error);

if(pid_output yaw > pid max yaw)pid output yaw = pid max_yaw;

else if(pid_output yaw < pid max yaw * -1)pid_output_yaw = pid max_yaw * -1;

pid last yaw d error = pid_error temp;

}

//This part converts the actual receiver signals to a standardized 1000 — 1500 — 2000 microsecond value.
//The stored data in the EEPROM is used.
int convert_receiver channel(byte function){

byte channel, reverse; //First we declare some local variables

int low, center, high, actual;

int difference;

channel = eeprom_data|function + 23] & 0b00000111; //What channel corresponds with the
specific function

if(eeprom_data[function + 23] & 0b10000000)reverse = 1; //Reverse channel when most
significant bit is set

else reverse = 0; //1f the most significant is not set there is no reverse

actual = receiver_input[channel]; //Read the actual receiver value for the

corresponding function
low = (eeprom_data[channel * 2 + 15] << 8) | eeprom_data[channel * 2 + 14]; //Store the low value for the

specific receiver input channel
center = (eeprom_data[channel * 2 - 1] << 8) | eeprom_data[channel * 2 - 2]; //Store the center value for the

specific receiver input channel
high = (eeprom_data[channel * 2 + 7] << 8) | eeprom_data[channel * 2 + 6]; //Store the high value for the

specific receiver input channel

if(actual < center){ //The actual receiver value is lower than the center value
if(actual < low)actual = low; //Limit the lowest value to the value that was
detected during setup
difference = ((long)(center - actual) * (long)500) / (center - low); //Calculate and scale the actual value to
a 1000 - 2000us value
if(reverse == 1)return 1500 + difference; //1f the channel is reversed
else return 1500 - difference; //If the channel is not reversed
h
else if(actual > center){ /IThe actual receiver value is higher than
the center value
if(actual > high)actual = high; //Limit the lowest value to the value that was

detected during setup

difference = ((long)(actual - center) * (long)500) / (high - center); //Calculate and scale the actual value to
a 1000 - 2000us value

if(reverse == 1)return 1500 - difference; //If the channel is reversed

else return 1500 + difference; //If the channel is not reversed

}

else return 1500;

}

void set_gyro registers(){
//Setup the MPU-6050
if(eeprom_data[31] == 1){
Wire.beginTransmission(gyro_address);
during search.
Wire.write(0x6B);
hex)
Wire.write(0x00);
Wire.endTransmission();

Wire.beginTransmission(gyro_address);
during search.
Wire.write(0x1B);
(1B hex)
Wire.write(0x08);
Wire.endTransmission();

Wire.beginTransmission(gyro_address);
during search.

Wire.write(0x1C);
(1A hex)

Wire.write(0x10);
range)

Wire.endTransmission();

//Start communication with the address found
//We want to write to the PWR_MGMT 1 register (6B

//Set the register bits as 00000000 to activate the gyro
//End the transmission with the gyro.

//Start communication with the address found
//We want to write to the GYRO_CONFIG register

//Set the register bits as 00001000 (500dps full scale)
//End the transmission with the gyro

//Start communication with the address found
//We want to write to the ACCEL CONFIG register
//Set the register bits as 00010000 (+/- 8g full scale

//End the transmission with the gyro

//Let's perform a random register check to see if the values are written correct

Wire.beginTransmission(gyro_address);
during search

Wire.write(0x1B);

Wire.endTransmission();

Wire.requestFrom(gyro address, 1);

while(Wire.available() < 1);

if(Wire.read() != 0x08){
digitalWrite(12,HIGH);
while(1)delay(10);

b

Wire.beginTransmission(gyro address);
during search
Wire.write(0x1A);
Wire.write(0x03);
Pass Filter to ~43Hz)
Wire.endTransmission();

//Start communication with the address found

//Start reading (@ register 0x1B
//End the transmission
//Request 1 bytes from the gyro
//Wait until the 6 bytes are received
//Check if the value is 0x08
//Turn on the warning led
//Stay in this loop for ever

//Start communication with the address found

//We want to write to the CONFIG register (1A hex)
//Set the register bits as 00000011 (Set Digital Low

//End the transmission with the gyro

